RS Y T EED
gi%&fwé’iﬁfm% '\J‘J%}_i.’fi\

Book Nq. oz

Copy No. @%

Amendment No. %

@ The Copyrightin this c'o-cument is tha property of Ellion

INY
Flight Automation Limited. The documant is supnlizd by
Eliiott Flight Automation Limited cn the eXprass terms that
ftisto be treated a3 confidential and that it may rot k2 cenied
used or disclosed to others for B0y pUrpGse except as suth-
orised in writing by this Comgany.

AIRBORNE COMPUTING DIVISION
ELLIOTT FLIGHT AUTCMATION LILHTED

To8is. bovke desenbas

%:gfr‘.@ g:d,,aemmmw bz:u?ﬁ -

- eass Sk, g4/, ggﬁmﬁ Mode, 3

2- PRLS SIE, i, Binuwy Mole 3

|- PASS SIR Oplions (M)

~PASE SR Opbions (M,,g@
gﬁﬂﬁf} ennbla rrecdiine - code proyiTaens PR s COVRIA Sy podidlie
fore B wn ow ey 803 905, e 920 cempulir

’i’\ﬁLU ‘uﬂuﬁ,_
-~

'fmfe, riradar Mede 3.

Tz cbous RS B18& awd Z-PALY SR Lot spusds ue
ﬁw - gé'wit.m h{:ﬁxﬁ.ﬁfﬁﬂg«ﬁ- Q/M{ ‘1’:&&} "&yﬁ,ﬁ mws-.gﬂsz,,.

Lapes

wlinein c&-@f«*ﬁ;}.—. e e code ol

s Eﬁpa teoder prodsh aed Talpesdes tafered \u

o {',13 EYAL . -'./‘k:i;(

il lis howk | and e ACD Binary brpe Goovat and
ACD. Tutemel toda efenad ko ba this ook ane dofiiad e
Boole \0b& "‘io'&/‘io':?["’%l@ USEFUL NGTES ',

“TPen eoshd s whss @ FPTOR Loy ﬁ-\;iéw wntie ‘}:33 \ CH) 5:

rascfuiie
F.E,!.)\.fi?{
foele 4

o “?03;’5?2(;3 GAE Caruvs i"'é&}'&.ﬁ'ﬁ .

&g C‘i GO
- c,i..‘-"fg;-é. CL,-/‘“Z"EQ S{ £ (5 ﬁbﬁ’{"’ﬁ s u.a LJ 84yttt k“s}
Bese {13 ‘9nz SR PROGE SAMMER'S GUIBE ' avik

. Chapter

Chapter
Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

5:

10:

Prodoce, & Corbon

INTRODUCTION

1)1 General., .. . vh vh v ceve s

1.2 Glossary. of terms. .. . ee v ove e s

1.3 Elements of SIR P:rog_,lams ch ee e aw me e s
1.4 'New line' sequence.. vv o o¢ 1o oe o0
1.5 Six bitinternal code ., .. vv vh vl e aa v

WORDS .0 v v sv os ve ee e e e e e e e e

B}JOC}-is % € e LR} o LY i o» @ . ® L] L @ -«.dc

IDEN I‘II‘TLRS

4.1 Globkal and Sub- Glob“} Identifiers .. .+ v+ .o
4.,1.1 Global Identifiers .. ve o ve so 24

4. 1.2 Sub-CGlobal Identifiers .. .v oo is 20 »

4.,1.3 Example t4 v te v ve en as

4.2 Local IdentifieTs.. vv co oo vs e 24 o5 o2 o=
4.3 ILabels and Declarafions

4.4 Example ., Gt e te s 4 as we e xe ae
INSTRUCTIONS

S
B.1 Absolute AJAresses,, .. .v vo o0 o0 os o
5.2 Relative Addresses.,,

5.3 Identified Addresses

5.4 lLiteral AJAresses .., .. vu e a6 e sn e
5.4.1 OuAasi-instrection se e«

CONSTANTS

-

6.1 Integer and Fractions,., .. 7 ..t el W00
6.2 Octal Groubs .t w4 4v e a6 o0 a0 ta a6 10 o
6.3 Alphanumeric Groups, .

6.4 Pseudo-Instructions «v v vt cv au oo
SKIPS

7.1 Labelled Skips o vv v e 0 0v e

COMMENTS & TITLLES vt v vr ae vt vn ae v vu oo

END OF TAPE AND END OF PROGRAI\'I SYMBOLS
9.1 End of tape symbol (halt code}.. .,
9,2 End of program symbol (%)..

SPECIAL FACILITIES
10,1 Patchand Restore .. v v v cc o0 ae 2o =
10,1.1 Patch . vv vimie o0 cn oo oo s
~ 10, 1.2 Restore ,. ..

10. 2 m*rmﬁaumcﬁmimss 3uz

16
17
18

19

20

21
21

22
22
22
23

e

Page
Chapter 11: OPTIONS foR I-fASs Q2 |
' : 111 Load-and-Go mode .y v. ve vr v vr e 25
11.2 Non Load-and-Go mode .. v' s vr v v o .. 26
11.3 Check mode +. .. e v v on .. 27
11,4 dlszs of non load-and-go aqsemb]y e . 27
11.5 Summary and Examples of Options 28

Chapter 12: ASSEMBILY AND LOADING OF SIR TAPES wite -fa3S S
12,1 Assembly of SIR TaPeS v v ve vh en vv oo us 29
12.1.1 ILoad-and-Go Mode.. v v ve vt v . 29
= 12.1.2 DNon Load-and-Go Mode ., ,. .. 29
K 12.1.3 Checking Mode .. o0 vh vi v s ve on 29
12. 2 Loading of Relocatable Binary Tapes 30
12. 3 Mixing of RLD tapes and mnemonic tapes .. . 31
12. 4 Loading programs into the high end of the store 31
8. 5 Cﬁwﬁbﬁbi&tg okl caddier iSsuen & 1-PASE SR 3

{t89.6 Mu‘i.&;i?\ﬁz. P“vt:esram (‘.\.‘SSOM-{&LS Btﬁ

Chapter 13: ERROR INDICATIONS
13.1 Layout of Error Indications and Their
LEifect onn Assemnbly vu ve vr ve en ce ee sa s 34

13.2 Examples of Assembly Error Indications 34 ¢
13. 3 Error Indications given during loading of g
rclocatable binary tapes.. v vs ve vr e sa ws 35

Chapter 14: EXAMPLE OF A SIR PROG RAI\'L 7 |
14 1 Noies L LI . = . . & . 8 + 2 .« 8 L . 'l - @ 4 & L 38
14.2 Layout P 38

Chapter 15: SUMMARY OF ENTRY POINTS Of i-Pas$.21€ 39
Choptee 161 STORC wsid BY =SS SIK vowe oo .. 37

Chapbze 14 1 2-PASS SIR

RS G{eﬁevmﬁ ’D‘?—Sc.r's,?%:‘:m 40

| V&, TTriager Fo el 4 L
a0 pRoas w
194, Litecals 43

\':? . Y Fiogena i’.} e & L‘.ﬂs&i«»&f} 5 & e lobal Lisk "fi"‘"r

4.6, wraping e dickimaon. B asse v“-«m»‘w«’xﬁ *:”W} g 45

: 3 \4 . ':% . gum*'\"nﬁw‘\j ‘??F ﬁ Cree faadha conbibed ‘}‘é
14.%. S mgm»j P Euibf:j ?c:;mw“i} 4 '%‘

; ‘:E . GE. ?’)\,Y\,}-’LV“:} %ﬁ»?{;ﬁs %zu V};:j&f/\-f.t.f;g\ . "i’a\\j gi:"‘ i’ F%L? «f‘a H {‘}\ T

LY S

PRE Ff’&ﬁ.?ﬂ

SO

s Lo dasesd .
“‘EX wefion FLOLASS 5;\.%':2%@}-&’; t&ys‘, f:; . CRTT “E»:’ g&xﬂ}, Wﬂj}%‘, el I

bk W teedts b fadlec wHl 403]905 20
e danns ~cardie

g) &
Unge (:af,";g:zﬁ&‘mr!ﬁg&»s"'&

o 920 eompdEs e e G192 cwmal store o

&
& ﬁﬂ,;%iw - g.?@.wi puredn amd reader,

135 S s toe &Eﬁ;w i tions ol »Qa erbilies gi@ﬁ

foo oo WaRBE < ot shevee

.
.
Ladvdag f P TR TRerY 4
ad .

- Both. cstembleds o Son &iﬁaﬁ*aﬁué Gn GOD - Qenips
Teleeodn we G20 Telecode ‘

+

Botf, envoadilent novceelieg wie vemcdsr vaoda, 3 be%ﬂna&m&%}
(ﬁdu"?m Mé;_’o};m rruerehe A w L&;«‘v;.h;}&eﬁgg b ebsech

PP TP u}:.x,

(r.t.2.3 et mode f:s}j eirlonr watiees o - PASSE %i-ﬁ>

e 4o post assevbder s used ég,.f;mﬁ e Jo

R} Qi}i“ Pl by é:’:
i
5 “ prog fraan ad vy e alweuk 4000 er S0LU wvils,

(:sw i(gl{';‘}é e ?mikjﬁ W g . &Y if‘ff S v ‘h»:;l& a. wmistﬁiﬁ &
O % oty £
. P ‘ﬁ‘:ﬁrg. vy G’% i ‘r‘\t} "{9—%@? o, %’.{?-ii ,-:‘i - PI}:;% = g &%E‘Q,Vv‘xiﬁ}\ﬁ«{ E?,

[&S"‘-ﬁi'

CRuTiIOon,

m \ LHUA v.?» ilr— ?AS N D C;'\.,@'}L“, o ek

A wied ko RAKRE b W Loe Lemasd ‘ﬂ e
e V6384 - crpezh Sl Houwl Kg¥-) S N ‘m,}
.

dapmg @riEes Lo CLLE O Ll ne it“&,?»w .

TRy

Y

A

e
Chapter . 1I: | INTROCDUCTION
1.1 General
_ The Symbolic Input Routine {SIR} enables programs
to be written in a modified form of machine code which has two principal
advantages over machine code:
(i) It is not necessary to specify the absolute address

of a store location used in a program. Locations
may instead be referred fo by names invented

by the programmer and the SIR asscrnbler will
allocate a specific store location for each such
invented name.

(ii) It is possible to write instructions using
constants, without specifying where the constant
is stored. Instead the constant itself is written
in the address part of the instruction.

I-pAss Programs written in SIR code can be asscmbled
by means of theASIR assembler in two ways, load-and-go and non load-and-go.

(iii) Programs assembled in load-and-go mode are
loaded into the computer ready for triggering,

(iv) Programs assembled in non load-and-go mode,
however, are output in a relocatable binary code
so that they can be entered into the computer by
means of the SIR binary loader mubing oAl
I—-FASS SR, The reason for
having this alternative mode of assernbly is

P et given in ch'tpter 11, 3.
Jroms SR codt o ol be oS wablagd by, 9-fagg SR,

1.2 Glossary of terms,.

In the following glossary a brief explanation of cach term
is given followed where necessary by a reference to a chapter where a full
definition or explanation is to be found.

ALPHANUMERIC CHARACTER any tape charactel which has a six bit internal
code 1epre.)entat1011 (6. 3)

ALPHANUMERIC GROUP a group of three ALPHANUMERIC CHARACTERS -
a type of constant (6. 3)

ASSEMBLER the program which reads and translates programs written in
SIR code {12.1)

BLOCK the main division of a PROGRAM: It comprises a GLOBAL ID& NTIFIER
LIST followed by a CODE BODY (Chap. 3}; and shenld be precaded Ly o TTOTLE

1

BLOCK RELATIVE ADDRESS {N;) the address of location N of the current,
- BLOCK, where N is an unsigned integer. (The first locatmn of a
BLOCK is relative location zero) {5. 2. ii). (oheoletsd

CODE BODY all that part of a BLOCK other than the GLOBAL IDENTIFIER
LIST. It includes constants, instructions and work-space {Chap. 3).

COMMENT information inserted in a SIR program which may be meaningful
to human beings, but is ignored by the ASSEMBLER. Comments are
enclosed in round brackets () (Chap. 8). Se &ise TITLE

CURRENT PLACING ADDRESS (CPA) the address where the nextzwohrd will
“be placed by SIR (10.1). elso called Svope forsteg (683,

CURRENT PLACING ADDRESS RESERVE {CPAR) a location holding a
former placing address used in conjunction with the PATCH and RESTORE
facilities (10. 1).

DECLARATION the use of an IDENTIFIER as a LABEL {Chap. 4).

DICTIONARY the part of the computer store in which the ASSEMBLER keeps
a list of IDENTIFIERS, INCREMENTS and LITIERALS together with references
to the locations to which they refer. Also the list itself.

DIRECTIVE a PATCH, RESTORE, SKIP or OP TION (qqv.). Directives tell
the ASSEMBLER how and where it is to store the translated program.

GLOBAL IDENTIFIER an IDENTIFIER havmg the same meaning in several)
PROGRAMS (4. 2).

GLOBAL IDENTIFIER LIST the list of GLOBAL and SUB GLOBAL
IDENTIFIERS, valid in the BLOCK it heads, that is enclosed in square
brackets and occurs at the head of each BLOCK (4. 12}.

HALT CODE a character punched on a SIR mnemonic tape, at the beginning
g of 2 newline, which causes the ASSEMBLER to wait, (G be writha

IDENTIFIED ADDRESS an address consisting of an IDENTIFIER alone or
an IDENTIFIER followed by an INGREMENT (5. 3).

IDENTIFIER an inv.ented name used as substitute for an address (4).

‘ . INﬁCREMENT a signed in‘tcgér_folld\arin_g an IDENTIFIER to modify its meaning (gtgj.

INTERMEDIATE TAPE ¢ $es RELOCATAGLE GWWARY TAPE
LABEL an IDENTIFIER preceding a word and referring to the location

containing that word (4. 3).

LABEL LIST 2 list of LABELS together with their addresses whlch can be
pon chnd, during ASSEMBLY (11.2}.

' LITERAL a constant appearing as the address part of an instruction (5. 4).

LOAD- AN - GO a mode of operation in which a SIR program is assembled into

‘the computer store for immediate use, c¢f. NON LOAD-AND-GO (11.1, 12.1)

LOADER a tape read in by the initial instructions, s poneludd of
e .z?@m c,,»g; &»?ﬁﬁ‘s msa. Ko Snrrnny b pes .

LOCAL IDE,NTIFHZR an IDENTIFIER which retains its meaning only inside
the block in which it is declared (4. 1).

NON LOAD AND GO a mode of operation in which a SIR program is translated
to a RELOCATABLE BINARY TAPE (11.2, 12,1).

- OPTION (#N) a DIRECTIVE to the ASSEMBLER which enables the programmer
" to vary the way in which the assembler operates (Chap. 11).

PATCH (&N) a DIRECTIVE used to correct or control the placmg of a SIR
program. It instructs the assembler to store program in location N onwards
(10. 1).

PERCENT SIGN(%) the end of program symbol. On reading it the ASSEMBLER
locates constants and checks for undeclared identifiers and then waits (9. 2).

PROGRAM a sequence of BLOCKS terminated by a PERCENT SIGN.

' PSEUDO INSTRUCTION an instruction not intended to be obeyed. It is used as,

for example, a constant. If is written in an identical form to other instructions

(6. 4).
QUASI-INSTRUCTION a literal address in the form of an instruction (5. 4. 1)
RELOCATABLE BINARY (RLB) TAPE a special tape holding a SIR program

which is output in NON LOAD AND GO assembly (12. 1, 12.2).
Also called aw (NTEAMEBATE . Uope.

'C}-”Aﬁ»f‘ﬂﬁ-%%ﬁ,‘ (La,ﬁ‘%ca@.é e b, g,: }me; §.M_¢g, <R tﬁwtﬁé phee

i

RESTO’R? ().a DIR L”T?{VE which cancels the cfxect of a PATCIL or SLll(‘}a

E 'of PATCEES by resmrmg the placing address to its orlgmal value (10 1)

hads _ _
S?“PARATOR a spacegor new line. It is used to gseparate different SIR
elements, Cow ba w,.—.ﬁ'm Q @ P .

SIX-BIT INTERNAL CODE the code in which the ASSEMBLER stores
characters three *{;o a Iocatiozs, See code table in (1. 5).

SKP (> N) a DIRECTI%, normaily used to reserve work space, which

e instructs the assembler to leave the next N store locations unaltered {7).

EST@RE POINTER © %m CURRENT PLACING PyBRels

SUB GLOBAL IDENTIFIER an TDE‘NTII* IER having the same mcanmg in

~several BLOCKS {4. 1)..

TITLE o COMMENT ob tha Si::m"c o 0. %sn{;&, o BLOCK
enelosed, —tbé Dugissm oo thowleie {Q s M@i" C(, a-dh o S‘W\ﬁm bem ek b)
$~m— s PUrpLse R tdtan ixi'-:sm.ﬁ O ‘;«,‘Qﬁm wavat, e blo .;,5«; C%,f,) @)

1.3 Elements of SIR Programs

The following basic elements may occur in a SIR
progl am, and must be separated from each other by at least one separator.

Words ' - Labels

Patches, Rostowas, Global Identifier Lists

Skips _ Stop Codes

Options Percent symbols

Comments A Tgner, ’

See references in 1, 2 for details of these elements.

1.4 'New line' sequence

The SIR assemblexs reodl one line of source text at
a time into a read buffer. Every new line should be followed by several

_ blanks to simplify future editing of the tape. (The omission of these
blanks is not an error)., To this end edit programs
are aunllable 4o automatically insert blanks after each new . _
line.

Nobte bk £ Tege b‘\cmxs g €§5€’f/_‘-5‘:ﬂa£ ‘,-F
Sh:?-»::m cwb\o,mti;m;_ a.M._ ru:ft uSeds S '

:cﬂ GE5 coda Chepth, nowline oo itk o A

9&“‘?‘?".’“ . :ﬂ""\.ﬁ_&' mﬁkﬁ (Luu M) 68 _':(wwﬂmw .

N

W

1.5 Six bit internal code.

b bit coda LGk coda :
Chiocmedoe Cheepaloae
QLTI § { Crekom b Deedmak Oehal
3} aep i E -

£

£

0 00 | & Spoce 22 40 N gt
1 61 () Mewline a3 41
2 0z Loon 24 42
3 ; 03 ; £ 25 43
4 :
5
6

04 i 5 3B 44
o5 % 37 a5

A
B

C

D

B

08 L& 38 46 7
------ 707 4 ecute 3% 47 G
g8 10 | 40 50 i
g 11 51 T
10 12 7 42 - 52 ¥
11 13 43 53 K
12 14 ' . 44 54 L
13 m - 45 55 H
14 15 N
15 17 e

FOE
NN
-t

45 56
57
48 60 P

¢ f 61
50 62
51 63
B2 64
53 88
66 |
55 87
54 70
57 71

~
o
-3

16 _ 20
17 : 21
18 22
9 . 23
20 24
21 : 28
22 26
23 27
24 30
25 31

.

E\)-—\O";
i
Ww
SO

el
3

DO S G U S W
[9)]
e

X

; v
24 g a2 : 58 T2 i 7
27 33 : ; 59 73 r
o8 34 < £0 74 g
%% =5 L = 51 75 1
a0 ! 35 > 62 (I t

21 - aT

3
&3]
o~}

77

?

Nobzs abeel e L-bib code

¥

l @ ey e ?umzim&«ﬁ% ox “agews Liow ' e

£

. ol - o %) 1% e ¥ i,
Cﬂor‘t’”.‘,m&@ RT3 T VR) Laadd . L st #.
2, On inpat no distinction is made between upper case and lower case letters. Letters are

always outpui in upper case.

3. On G0 Telneedo b:a{zerﬁj ,2/ TR

cv-'\G;v..- S 32?& [\’YW»\:}
Yo powielrd ag $} ct) R 3 :%: MW& tle amn - G.sfﬁu,‘g'fmﬁ
vertizal Lo chipees ehie ¢ g PN w gﬁ\w‘.ﬁgw{ 'L "\@3'

»

’g}ﬁo P elg ol &d g

‘é\”. On S - Berss code. hm-’ "3\“‘&% LAt ke pun P |

‘y \
o8 edtaer Gt ar @)} f:g ey b, fuwdﬁam a5

fond . 1
i i 2‘ a(\ 2 M g K M&f’lfﬁ \)&, o Y g_,,gq_«:", Q
v Aae~ P <, oA

LI

5‘ e 5‘:’;‘“‘”‘!’“{‘ @ﬂ, Bz c‘“{j"‘k ‘\.7"—*&3). Mtj edze e
ured we S\R lt:?f“?w-{;»@’f}f“ v el v bteobid e ,

¢ TS L-bik SIR Uetewwd e B Stmely
reloked, o "RLCD, Dabenad Coda 1/\2,/(,:50
dasonbed elicorfest,

5aA.

~entered. into consecutive

Chapter 2: WORDS

Words are the basic elements of 2 SIR program. After

.asscembly each SIR word occupies one store location in the computer.
Words can be written in two forms:i-

(i) constants e.g. +304
-, 2667
(ii) instructions e.g. 15 2048

/2 CAT+10

* All words must be followed by a separator. Words are

in the SIR program.

rule is when it receives an order to the contrary in a directive {patch,
skip, or option).

e

store locations in the order that they appecar
The only time that the assembler does not obey this

wgE

o
£t

G

" Chapter 3: BLOCKS

‘ Every SIR program consists of one or more blocks, Each
block is divided into two parts:- ' o '
(i) A Global Identifier List which is enclosed by square
brackets || J. This part of the block may only contain
identifiers and separators.

A Code Body which follows the Glcbal Identifier Iist
of the same block, and ~which is terminated cither by the
[symbol at the start of the next block, or by the end of
program symbol (%).

(1)

The significance of these terms is explained in the next
chapter, '

The last instruction capable of being obeyed in each block must
be an unconditional jump (e. g. the dynamic stop 8;4+0 explained in 5. 2(i) below).
It will usually be followed by labelled constants and work space.

The effect of trickling out of the end of a block is undefined.

" Example

[PRINT INT FRAC) Global Identifier List]

PRINT >} 7

INT 5 FRAC
* . L] . - ’ Code

body

= block 1

0 PRINT
/8 2
>1

WSP
[INT]

L[4

block 2

N. B. The Global Identifier List may be omitted at the head of a one-block
program, but if it is omitted block relative addresses (see 5. 2(ii))

may not be used.

The we of ktles Sefore each floda (Chafste.r)

INELOTE T S {If;.‘:{ “

LS SE;«\':TL??

Chapter 4: IDENTIFIERS " T

An identifier is a name invented by the progrémmer which
is a substitute for an address. Any combination of letters .A~7Z and digits
0-9 is acceptable as an identificr, provided that the identifier starts with
a letter. ‘

e. g.

A
HOUR . s ps
TE2 are accepitable identifiers

* MULTIP LE

32BIT are starts with a digit ~
BL{BATI) not parentheses ‘
T 52 acceptable space -
B-LINE because hyphen

L

Identifiers are distinguished from each other by their
first six characters. Thus no distinction is made between FLIGHT,
FLIGHTI, FLIGHT2 and FLIGHTPATH.

Since no distinction is made between upper and lower
case letters the identifiers FLIGHT, flight, fILiGhT and Flight are
treated as identical. Programmers are strongly advised to use ugper
case exclusively when writing programs, excest for comnen.

Identificrs are declared by being used as labels.

" Consequently every identifier must be used as a label once and only

once within its range of validity.

4,1 Global and Sub—GIobal Identifiers. k
4,1.1 Global Identifiers.

Global Identifiers are the links between
the different blocks of a program. They must be listed in the Global
Identifier Lists at the head of the block in which they are declared.and
at the heads of every other block in which they are to be valid. One or
more separators must follow each identifier in a Global Identifier List,
and only identifiers separators and the Sub-Global Identifier marker, " ~

o
. . 3
may occur between the square brackets which enclose the list.

_ When an identifier is included in the Glohal
Identificr Lists of two or more blocks which are assembled together it
refers to 4 single address indicated by a label in one of these blocks (the
block in which it is declared). An identifier which is used globally in some
blocks may be used as a local identifier in any block in which it is not listed
as global. -

g

4.1.2 Sub-Global Identifiers.

I on its first occurrence in a Global Idenh}fler
Llst an identifier is immediately preceded by H o m it is treated as a Sub-Global

o Idemuflel

Whereas a Global Identifier remains in the SIR¥
dictionary after the end of program symbol % has been encountered and

permits communication between several programs that are in store together,
~ Sub-Global Identifiers are removed from the SIR dictionary when % is

encountered.

The listing of an identifier as Global or Sub-
Global is determined by the first Global Identifier list in which it occurs

and is valid for a complete program. An identifier cannot be Global in sceme .
blocks of a program and Sub-Global in others.

4,1.3 Examples.
[MOUSE #HAMSTER "LION WOOLI)

MOUSE and WOQOLF are QGlobal Identifiers.
HAMSTER and LION are Sub-Global Identifiers,

4,2 ILocal Identifiers,

, Jdentifiers which are neither Global nor Sub-Global are
Local, Local identifiers have no meaning outside the block in which they are
declared. ‘

The same name may represent a Global or Sub-Global
Identlfler in some blocks and several different Local Identifiers in other blocks
and be undefined elsewhere (see 4. 5).

4.3 Labels and Declaratiéns.

Each Local Identifier is declared by being used once and
only once as a label in the block for which it is valid.

Similarly each Global or Sub-Global Identifier is declared
by being used once and only once as a label in exactly one of the blocks for
which it is valid.

Labels are followed by one or more separators, and
refer to the store location into which the word following the label is to be
assembled.

e. g OUTPUT 15 6144
AREA -23378

’lk. I-FASS SR Onby. J-PRES SR aats 3*«-‘»-@“&%;;?%%@‘%«'
(%3 N
waf&%ﬁﬁfﬁ ot t‘é‘},‘:&b&ﬁ‘ R

_ A location may be labelled by several identifiers with
one or more scpalatm s between thcim ‘They need not be all on cone line.

!

e.g. 8 REPEAT -
BEGIN GO START
ENTRY
4 FLAG

Assume that the instruction 8 REPEAT is assembled
in location 23006. Then BEGIN, GO, START, ENTRY all refer to location
2301. I, however, 8 REPEAT was assembled in 2336, then BEGIN, GO,
START, ENTRY would refer to location 233?, into which the instruction
4 FLAG would be assembled.

An absolute address may be labelled. Such a label Py
is written thus: CONTINUE=9. . This would allow location 9 to be referred g
to as CONTINUE.

4.4 Example (see Figure 2).

(i) Programs are named after the Global or Sub-Global
identifier that labels their first instruction,

(ii) Blocks are named after the Global or Sub-Global
identifier that labels their first instruction,

(iii) APPLE is Global in both programs.

(iv) PEAR is Sub-Global in program APPLE and another
PEAR is Sub-Global in program PLUM.

(v) APRICOT is Global in both programs and another
APRICOT is Local to block PEAR of APPLE,

(vi) ORANGE is Local to block APPLE of APPLE. o}

(vii) PLUM is Sub-Global in program APPLE and another
PLUM is the name of the second program.

(viii) PRUNE and END are Local in block PEAR of PLUM.

(ix) A third program could refer to the Global Identifiers
APPLE, APRICOT and PLUM.

(x) The example is a nonsense prograni.

iy

%o

10 17

END
PRUNE
%o

8 PEAR
[PEAR
. PEAR 10 PRUNE

APRICOT +0
[PIL.UM APRICOT PEAR]
PLUM § PEAR
APRICOT >100

4 PRUNE
7 APPLE
8 END

-5

[APPLE “PEAR APRICOT]

' S _r—w.APPLE 0 APRICOT
. o o 14 17~
A ORANGE =192
. , { ' 7 PEAR
L 8 ORANGE
' [PEAR APPLE "PLUM]
PEAR 10 APRICOT =
4 APRICOT
9 PLUM
8 APPLE

[PLUM APRICOT “PEAR]
PLUM:== 5095
AP LUM

0 APRICOT

APPLE

i)

block

APPLE |

block
PEAR

. block

PLUM

block
PLUM

block
PEAR

Y

-t

r‘

program

APPLE

program
PLUM

11

Chaptex - b: INSTRUCTIONS

. Words written in thelform of instructicns are introduced by

a / (B-line) or a digit. Each word comprises two parts, a functmn and an

addicss, separated by one or more separators,

The functions consists of 2 decimal integer between 0 and
15 representing corresponding functions and a2 [/ symbol immediately
preceding the integer if B-modification is desired.

The Address part of an instruction can be written in four
different ways; Absolute, Relative, Identified or Literal. It is assermbled
as an integer in the range 0-8191 and is interpreted at run-time as relative
to the start of the store module in which the instruction is placed.

References to locations in other store modules are made
by means of B-lined instructions. . '

5.1 Absoclute Addresses,

An absolute address is an unsigned integer not greater
than 8191, and it refers to the computer store location with that integer as
its address. In functions 14 and 15, however, the absolute address gives
further specification of the function by the usual conventions.)

Examgles
4 8180 load the acecumulator with the
contents of location 8180

15 6144 punch (the least significant 8 bits of)
the contents of the accumulator

5.2 Relative Addresses.

(The relative addresses must not be outside the range
0-8191). Relative Addresses are of two kinds:-

(i) Location Relative Address consisting of a semicolon
followed by a signed integer. This address refers
to a location, the address of which, is the sum of the
address of the location in which the current instruction
is being assembled, plus the signed integer. '

e.g. 7 ;43 means "jumnp three locations forward if zero"

5 ;=1 means *'store in the previous location"
8 ;40 means a dynamic stop.

Note that § ;0 is not a permissible instruction.

1a

S N‘;«

1

(i1} Block Relative Addresses consisting of an unsigned.
' integer not greater than 8191 £ollowed by a semicolon.
This address refers to a location with address equal
to the sum of the unsigned integer and the address of the
first location of the current block,

e. g. [MASS]
' +336
4 MASS
5 304

If +336 is assembled in location 3000 then 5 30; is
assembled as 5 3030, This Al éu = fvouumw!‘ for
Con\?;l-t??h‘-‘m{\" W\i{f%“, {Ras QM(}LM Gg_ggbm,,w%ggﬁf‘ O”g*s_,k’,q_g .

5.3 Identified Addresses.

An identified Address consists of an identifier alone or
followcd by a signed integer. An identified address is introduced by a letler.
The assembler replaces the identified address by the sum of the address of
the unique location labelled by the idertifier, plus the signed integer. The
signed integer is called an increment even if it is negative. Thus, in
Example 1, the instructions 5 CAT+10 and 4 CAT- 3 are both incremented
instructions with increments +10 and - 3 respectively.

_ An identified address may be used in the text before
the identifier to which it refers has been declared, i.e. has appeared as a
label. '

Although an incremented identifier may be referred to
before it has been declared, such references greatly increase the amount of
workspace required by the SIR“assembler itself. Consequently, if there is
a block of global work space it should be declared early in the program and,
arrays of local workspace should be declared near the start of the block in
which they occur. This has been done in Example 2.

Example 1

CAT 4 WS2
4 FLAG
7 ERROR
4 CAT
5 CAT+10
4 CAT-3

If 4 WS2 is assembled in location 5600 then
4 CAT is assembled as 4 5600
5 CAT+10 is assembled as 5 5610
4 CAT-3 1is assembled as 4 5597

#lné’ASS c}wﬁ,’_.:s . :
' 13

&l

' Y

[MXMULT]
& MYXMULT

MATRIX > 400 {(COMMENT THIS IS A SKIP)
+0

MYXMULT 4 WS1

4 MATRIXA265

s MXMULT is assembled in location 3072 then 4 MATRIX4265 is
assembled as 4 3338 (3338 = 3072+14265). The use of skips is explained
in Chapter 7. ' :

i o

‘5.4 ° Literal Addresses.
Literal addresses are introduced by 4, -, =, &, or £.
They are used to make it easicr to write instructions which operate on
constants., Instead of putting in the address part of the instruction an
identifier which labels the constant at some other point in the program

e.g. TEN +10

the programmer may put the constant itself into the address part of the
instruction; '

e.g. 4 +10

The assembler makes a special note of this, On
reading the end of program symbol % (see 9. 2} it allocates a store location 3
in which it places the constant and inserts the address of this location in all the
_instructions which use it.

. There are four types of literals, corresponding to
the four different possible types of constants.

(i) integers and fractions these have exactly the
(ii} octal groups same form as the
(iii) alphanumeric groups corresponding constants.

e g. 4 -.26067 6 &7177
2 4360 4 £E 36

(iv) gquasi-instructions {see helow)

Note:

.
5,4.1 Quasi-instructions.

Quasi-instruction literals differ in two respects

from pseudo-instruction constants. ' : S

(i} every quasi-instruction is introduced by an =
sign which immedizately precedes the function
bits or the solidus indicating B-modification
if this is present, '

(1) the address part of a quasi-instruction must
be in absolute form - relative, identified or
literal addresses are given as errors (error

E0)
Examples 4 =8 0
4 =/00 i.e. zero accwmulator except for 1 in sign bit.
6 =15,8191 i.e. make sign bit zero.*

L—— ot Spoaca Qmut&x B rocorumgedart e,
Yo

Literal addresses may only be used with functions 0, 1, 2, 4, 6,
12, 13. If an attempt is made to use a literal address with any
other function the error message EL will be displayed.

N AP {"\ 8, el w'ic.t :
Thie b Lo pelbiolegicnlly enfer 6 839TITY (e choge €.2)

15

Chapter 6: _(;O’\‘STANES _ _'

)Thcre are £0u1 types of constants a}lowcd in SIR

e

(1) Ini:egers and Fractions
{2) Octal Groups

(3) - Alphanumeric Groups
(4) Pseudo-Instructions.

All constants must be followed by a separator.

\\
6.1 Integers and Fractions.

*

An integer or fraction is introduced by a + or - sign.
If the + or - sign is immediately followed by an 11’1128{.,(31, then the constant
ds stored as a binary integer.

e.g. +14'st03:ed as 000 000 000 000 001 110
-64 stored as 111 111 111 111 pOO €00

Integers must be in the range - 131,071 to +131, 071 inclusive. (-131,072
may be written as - the octal group &400000)

If the + or - sagn is 1mmed1ately followed by a decimal pomt ()'followed
by an integer, the constant is stored as a binary fraction,

e.g. +.375 stored as 001 100 000 000 000 000 o
-.5 stored as 110 000 000 GO0 00C 000

(The ‘fz action' -1 can be written in the same way as the 1nteger -131072)
Fractions may contain up to six digits.
6.2 Octal Groups.

Octal Groups are introduced by a '&' sign, An
18- bit word can be divided into 6 groups of 3 bits, each being
equivalent to a digit from 0 to 7. Thus a constant can be written as a
group of 6 octal digits, which immediately follow the '&' sign.

e.g. &312705 is equivalent to 011 001 010 111 000 101

Octal groups of less than 6 digits can occur, in which case they are right-
hand justified (i.e. &42 means the same as &000042).

._.4
4-;«1.#
hSmk S

T

6.3 Alphanumcrzc Groups. .

Alphamlznerlc groups are 1nf.1‘oduced by a £ mgn, wluch
is follcwed by up to three alphanumeric. characters. These are packed, from

~left to vight, into the store location in the 6-bit SIR internal code. All
characters :mcludcd in the cpder‘tablc can be stored except that

(i) % cannot be included, {see 10.2}

(ii) the alphanumeric grollﬁ is considered as complete

if a new line is encountered hefore.three characters
“have been read after the £ sign. “In this case the
group is lefi-hand justified (1. e. the remaining
characters are considered to have code 0, the

code for a space). The new line is NOT considered
as one of the characters of the group, butl instead
acts as any ordinary separator.

.(ETI) Spaces, however, when occurring in the three
characters following a & sagn, are treated like
any other character.

(iv‘j Tels . mﬁfﬁm&wm grovpt VE bt d
s Y speecsy

el

(‘a’) e enable e wYovnmnl cofe o8 acostenal’ te
o stosedt, (dfsgum (i) elbows) e sgmhed
#‘ o alplmtmn vt S ps v theead os weleesx &4,

(vi) £ s storad o S valias E103, crtintfor
puncﬁ»‘mﬁ (VA ‘g‘: ‘/24 ov \‘

The chief use of alphanumeric groups is for storing
characters which are to be punched out at some stage of the program. This’
can only be done if the program also contains a print routine and a table for.
conversion from internal to external code.

P APRPY PYRP 2 su%;cu-timd waed bw

ok uk YLD Tekoreat cods i/t?»-/ faa] ? PRaLY Lon froad \!f-/?‘l«;"‘wﬁ g‘.’”"

4 w«k&ﬁ ol plaomaivas i oV i

"Exé,mgle 8

CAlpha- Actual : Form placed in store
numberic octal -
group equivalent in octal alphanumeric
as written {4 4] equivalent
'&éviAN 55 41 56 55 41 56 M_AN
| & space=new line || 00 35 s 00 35 00 space = space

(xx indicates an unspeciiied character)

6.4 Pseudo-Instructions.

These take the form of instructions but are used as
constants, They are identical in form to ordinary instructions.

e.g. /0 0 can be used to represent the integer - 131, 072

Similarly, constants can be obeyed as instructions.
The intentional use of constants in this manner is frequently described as
pathological programming and is to be deprecated. Failure to terminate
an instruction sequence with an unconditional jump as described in Chapter
3 is liable to result in this unwanted effect.

g

Chapter 7: BSKIPS

A’ skip >, indicates that a number of store locations are to be
left unaltered before the assembler continues filling the store with SIR words.
The number of locations which are to be left unchanged is indicated by an
optional + sign and an integer which immediately follows the > sign.

¥or example, if the following piece of SIR program occurred.

+133. g
> 15

* 4 8180
5 COUNT

- 4" s 2.

and the word +133 was entered into location 5000 in the com?uter store, the

skip > ‘15 indicates that the next word, the instruction 4 8180, is to be assembled
not in location 5001 but in location 5016, the instruction 5 COUNT is then
assembled in location 5017 and-so on.

The chief use of skips is to reserve locations for work space
without assigning any values to them. ‘
7.1 Labelled Skips.

" Locations left unchanged by skips may be labelled in the
same way as locations occupied by words.

e.g. ' 8 ERROR
> 4
ALPHA > 10
MATRIX > 400
BETA > 10

In this cage if 8 ERROR is assembled in location 4000,
ALPHA refers to location 4005, MATRIX to location 4015, BETA to location

4415, _
Notes: 1. The last word of the 10-word vector labelled ALPHA is
addressed as ALPHA+9. Similarly for MATRIX and BETA.,
2. Addresses outside the range indicated in note 1 may, of

course be referred to by incremented instructiens. Thus ALPHA+LL,
MATRIX+1 and BETA- 399 are alternative ways of referring to the
second location of the array MATRIX. However the increment
relative to ALPHA would have to be changed if the length of ALPHA
was changed and the increment relative to BETA would have to be
changed if the length of MATRIX was changed. '

- 19

Chapter 9: END OF‘ TAPE AND LND OF PROGRAM oYMBOLS

list of undeclared global identifiers followed by a 'FIRST LAST' message,

9 1 ~End oi tape synqbol (hali, code) '

: A halt code punched on a tape causes. the as semb}cr to -
wait, Assembly can then be continuved by re-entering at CONTINUE (sce
chap. 12) when the next tape is under the reader,

Halt codes are chiefly used:
(i) at the end of each tape of a program punched in parts.
(ii) at the end of patches.

- Frequently, when a program is being developed, each
block on a tape is terminated by a halt code and several inches of blank tape,

9,2 End of program symbol (%)

On reading a % symbol at the beginning of a line the
assembler displays a list of undeclared local and sub-global identifiers,
locates all the literals in consecutive locations immediately following the
program in the order in which they occurred in the program, displays a

indicating the store used by the program and waits. Further symbols on the
same line will be ignoredbuttheline must be terminated with a new- line
symbol in the usual way. A % symbol should be put:

(i) at the end of the last tape of a program in load-and-go

(ii) a2t the end of each section of a program which is to be
assembled as a separate relocatable binary tape in
non-load-and-go,

It will {requently be found convenient to end all tapes with
a halt code and to read the % symbol from the on-line teleprinter or from a
special tape comprising the character sequence: @ A ,E) @ a

21

‘Chapter 8: COI\xﬁ‘J?NTS 8 TITLES

.

Comrncnis are 1ncluded ina progra:m for the sole purpo&e of
maklng the prmt-« up of- t‘le prograrn edszm to undcrstaﬂd

_ A tring of cha I‘dciels beLWa,cn (= :‘.:.l"d) is a comument, and
ig ignored by SIR,&, A
comment may be inserted anywhere in a SIR program except in a Global
Identifier List. Comments must not, however, splif any SIR element.

e.g. the section of proEram:

' 9 ERRORZ (NUMBER OVERFLOW ERROR-
' INTEGER>131, 071)
4 INT
5 ws2

is assembledias if it were:
9 ERROR2
4 INT
5 W52

TE the Goeck S:Srnlaé"{ taside oo ecommand (o v?n_’-ﬂt@\‘f" "(" Be commank i
called o be, and ol ko espiad L

« SR ovibd the okt Lt
Woun pfqut{c}j o tecord of b&fﬂ Roaded. . ,
€.3. ((squeee Root SUGROUTING)

'1.5 [N E\}iﬁ_

Tibles omd comnuats m(ﬁ eontovn charncbod n the G"‘nl{' w.'i;e.
(zge_n, !_;5)5 QAMF!\) ot wu,&(‘ "0/9}" " (:' @-ML“>" showtd ok

Ko Uzicw{ W;’grt
Pt (My be wuded (o e prpee dosonbed W Ea p’{"%‘m pcur*ér' ’{'“'
NQQ LA.—M Pg,\tflxtuigd t&ﬁ& [.'m;Jy\A bmc,g(a_k CﬂVM{'-u .\:5 V\ﬂt ,’Q_{j\,'

A tble shewdid be Lotll p!4xﬁm omd Follswed b &« @) Gl
st gorbaas o _H’J ov lpwuevecage (atiels

Ko

Chapter 10: SPECIAL FACILITIES
' i0.1 Patch and :Res'tore.

A patch is a directive to the SIR assembler to stop
placing instructions in consccutive store locations and to place them
consccutively irom the location indicated by the patch. At the end of a
sequence. of patches compilation of the main program can be contmued by
the directive restore. - :

It is the responsibility of the user of these facilities
to ensure that no location, whose contents will be changed by the later
action of the SIR Assembler, is altered. (Such locations normally contain
in their address parts information used by SIR, changing this information

-may lead to the corruption of other parts of the program). Any location

containing an instruction which refers to a currently unplacuu iiteral or !
identifier falls into this cla5q ~~

g

10.1.1 Patch.
APATCH is written
tA

where A is a constant or any currently located address. Its effectcanbe{formally
defined as

if CPAR = -1 then CPAR:=CPA
then or otherwise CP A=A

hcniy

where .

CP A is the Current Placing Address, i,e. the
address in which SIR will place the next item, and

CP AR is a location used to hold a copy of the CPA
when inside a. Patch. (CPAR is initially set to -1 by the assembler).

In non-load-and-go mode a patch may be made to an unlocated label
if it is the first thing in the program, (apart from global lists and
comments} No other patches, or 'Restores' (g) are allowed in the
program. The label must be located when loading the RLB tape.

- 10.1.2 Restore

The symbol $ written by itself on a new line
causes assembly to continue from the location which would have been used
but for the intervention of a Patch or Patches. Its effect can be formally
defined as

if CPAR ¢ -1 then CPA:=CPAR . } .
then or otherwise CPAQ = -f ' I a4 '

: Thc 1cader should work .out for himself why

LB Patch 'read in aftei the end of a pr ogram, whlch uses htcralb must end

2§
%.

16.2 B Tvisﬁef *?&L&% Y f-Fess S

- PSS SR, cenakeiong a "b\‘\jﬁ&f* ’Qﬁmhiu e ibne d

v gecien 179, R evm,ﬂiw ?m»:;ﬁwm Cﬂ\% M s 1 be
edid W RS SR pior o amemity Ay Y. cass S, I-PASs
SR bow ascefty e %g_g ;ﬁ%m - ﬂ._d i L .

| e enhil pras ol wrBich, s R&m&&?‘{; " ¢
ocearS v . progresa v perecehed f%w_ I-PASS 518, Wew cmgnbio,
'ﬁﬂM '%&ev«\ c-ﬂgwa\m 79 "gmx d&é’*«%%’ J & % v‘fj Vi bas Strrhasd, F“‘{S"vm
e e ofusa o Sg:w {‘::WL i ! .
. o I pi gl VOig ok e, recervihasl ench o bt s 4 Y mﬂ‘v‘f
[-PATS SR ak execoTe” , via, &1F943,

TE% ’?Bﬁ‘t, z ,,L’ui%\.j ‘m cv&ﬁ Mﬁ:‘iﬂ Loy ’Q;E‘M.{ - g;_,v.& - 8{:‘

vaodesy e B.L. B meda "< s @W«,ﬁ.

B 3;_:-:(;5._5;'11;&;3'17'_3:-.-}_,1;_: opTz{ms FGR e mg gggz

Optmns are used to alte1 the way in whlcb ihe assembler

' _-,:op«&rates | fzey are uﬁ.rsdaced by an asterlsk (1‘} followcd by an: o;:tmnal

L sign and an mteger The: iast seven bits of the. mteger are ex;anumd and PRSI
va,matlons are: made 1n thc operaf.mn of thf. as) sembler PS iollows —.'-' R R

1 :_'.Bit_ o iR -Meaning”ﬁf 'b_it." ha_s:-"thé value : S R Ava11ab111ty
. o 1 - 5 o ROy - R ' Load Non— :: | SR
S . display labels don't dlspla‘f labels s ~0or 1 5'} e
T2 1 loadand go. - | monloadandgo 17 4 Q- 0
S S ! : ':-cléar' the store. | takemno-action - - I._.O_..C.)l_‘_:._}_‘.'.i BT (R 0
‘16 R S awfsf*n%;{& fv‘b’m & | continue at NEXT) 0orl | 0 o
{32 | setdictionar y. -] setdictionary I 0oxl 0 0
| Below program below assembler ' ' 1
64 perform checks .| compile program 0 -0 . i
= _ only | _ | _ ;. . . .

S When assembly is started at START, an . option of % 3is
.automatlcally assumed. This option, like all other options is cancelled
when the next option is read by the assembler. It should be noted that

‘the 1, 2 and 64 bits enforce conditions that hold continuously, whereas

the 4_; 16 and 32 bits direct the assembler to do one operation at the time
that the option is encountered.

It is not possible to enforce all combinations of the options
indicated by the six bits. The 2 bit is examined first to decide whether
the assembly is operating in the load-and-go or non load-and-go modes,
and the other bits are then examined where appropriate.

The difference between load-and-go and non load-and-go
_programs, .and the action of the binary loader, are explained more fully
in chapter 12.

11.1 l.oad-and-CGo mode

_ When the 2 bit in an option has value one, the assembler
operates in the load-and-go mode, i.e., it assembles the source program
_in the computer store ready for triggering.

' AL the other options -
are available, and the bits are examined in the following order:

25

S (1) g 16 bl‘c (co:atmue, at 21)

| 'IZZ{f the. 16 bzp =1, the as sembiy wxll contnme at R
'._"1ocatmn g IR AR R .

() 4 bit (Cledl the Siore)

"-:H the 4— bit = 1, the assemblel cleata all locatmns :
. _'.{rom the one where ‘i]oe next word is to be ascembled
o jusi bcfore thﬁ SIR as;,emblcl itself, .

- (111) 32 b:Lt (set dictmnary bclow pl ogl am)

Thc chtzonary is the area of store mhere thc

' asscmbicz lists all tHe 1den1,1f1{,13 and 111e1c11~3 1t

| _Iinds Itis normdlly bullt aup. 3ust bclow the. SIR.
assembler. :Li,self but if the 32 it = 1, it 1s bmli _
downwd,rdu from the 10catxon preucdmd thc: one o

~ where the ¢ assembler is about to put the. ncxt word,’
: ’I‘hls optlon may. be used when. storing a program in the. ingh end

_of store.. It may not be used in the same option 1nteger as :
bit 4. When optmn bit 32 is set = 1 the test. winch guards aga1nst

i -program overwntmg dlcnonary or’ the Assembler 1tse1f is removed

(1v) 1 bit (Display chbels)

If ‘the 1 bit = 1, whc,nevcr the Aeae*nblcl fmdb a

. lahel It. ?um)«zf: i ow nesoline, h}&q}, ety thha
cebafl oedhe decivead aﬁ@ﬁ&&m«g TR - N %%\% bo)
PIELAVES P " oV S Ma&ﬁn . M—g&r"‘ Low.ﬁ. Rodicls Gt
pm&m h:, pal Sf“m“ &.Mg%wh&g gﬂ,’mgx b’ﬁ 4
cund | Globeds %:5 neve. A R
Tw&,:, ase gww o~ e a,,grj@@/g u,;z, s icm« o
toda, raspeckive ot e L-bib. fn eackra aslong

e fvva Wiz ou paes Blocde W fsved.

Note that, if error indications occur, they will
appear among the labels.

11,2 ’\Ton Load— and-Go Inode

When the 2 bit has value zero, plograrns are

assembled in the non load-and-go mode, i.e. they are not assembled in
the store but are punched out in a special binary loader code and can be
entered into the store by means of 8. SR RBL. B, locder coitbin

I—PASS 1A,

Ta mww@ﬁ;%g o?t‘\'w e ol M%‘:ﬁg

11.

3 Check mode.

When bit 64 has the value 1 and bit 2 has the value 0

a program will be scanned for errors without actually being assembled.

The only option available in this mode is 'display

labels'. The effect of requiring other options is undefined.

2 bit (Main mode indicator)
This bit rmust be zero
1 bit (Display labels)

This bit has the same effect as in the load-and-go mode.

i : : 11.4 tizes of non 1oad— and» go a ﬂvsembly

Although it is usually more convenient to as semble

programs in the load-and-go mode, non- load, - covhe g0 cwudd s
wgad e e é"@}&%ﬁ&#gﬁ afwmhmmﬁ =

(i) "”‘M} o c{ﬁu wG’EW/""% % o progeara ug;--g

O. (},Aé&,‘, mmﬁ:;_&wt’ ,_-555 g.was.g.@% S E{g ,,m.» e ' oy

youekired Hoie Subbrmaingsd amd woulices comudd
e
e comniled (o QLE (nbeerng cdaale) %"I‘lxx 2%

173

L‘ZQAEW% Cr”‘““x B s pragem o \,-uu:; v pe

\,0@.1:1"@% M ‘Cq,,{&:crww_ F?’“ﬁ“' m'r r‘“f&é Cives ;‘L

x.

LiEiesd

RLPB tapes are much smaller than SIR tapes and are
read in at six times the speed.
ok WLt d
F;;g» et ow mt{}sﬁbﬁm tﬂr Fvﬁﬁr&m a,u%
PR . { o H 4
SMZ el o omtd e

coveue e d Y - ; i . IS 2L

prase %LM.,{,@& Es;j D =¥HES Jie

(E I} Fs e sases of {.w:ﬁf?c%“f}i:{mﬁ Cohs -
}
v . * - R
P {ﬁx.f,r,sﬂ’j 5 dad m*i‘%:ai.w L 1‘: i & ‘é’i‘? {‘ﬁ/g@
¥ v P . N fé
ann F’s;i.i';r;.f i ié Lodvey gggiw%mi £aa€ w’%z_&fn&,*

11.5 Summary and E}:amapl'e.s of Opiions ¥
Mode
Load-and-Go Translate to Check Effect
- paper tape -
2 0 64 Basic mode
1 : - : 1 i Display Labels
4 - : - Clear store i
16 - ' - Start placing program at &
3z - - Set Dictionary below program

Add together the numbers in the appropriate column
and precede the sum by an asterisk. e.g. '

19 Load-and-Go, start placing program at- 3
location @, display labels.
* 0 - Translate to paper tape.

¥-65 Checking mode, display labels.

%

e iabeaadiede ® foe

Chapter 12: ASSEI\;{BLY AND LOADING OF SIR TAPES WITH -FASS S,

12,1 Assernbly of SIR Tapes.

*ﬁm mﬁémfmw H-PRgs Sin 23@{5{“5: &mﬁwﬁ*ﬁ“ 'is read in by the initial instyr 'E.lCth‘l’lS; e f“if&fu ?3
_.All iapes written in SIR can then be read in by entgzmg the. @auernblcr ‘at.one
' 6’5 the fylowing st‘ntlng addresses; «las b f"ie:séfé, ,3 :

A'.cid-rés's Name U Bffect

&i#'ﬁéﬁ-{g START Cancel all existing dictionaries
| R and begin assembly, gldug

&5‘1%?;»‘%2 . Loy &Aaﬁénmi’:&&mfg andd, (ol

ocTn- o ' | Wb :”“’.’ M“"”F‘i&b«ocﬁ‘ﬁ)

‘§ CSL -3 W‘M Telecteha

11943 CONTINUE Assemble, maintaining current
oTTEL dictionaries

12. 1.1 Load-and-Go Mode.

- In this mode programs are assembled in the
store ready for immediate running. During assembly appropriate error

* indications and, if required by the options, a label list arc displayed.

When % is displayed the assembler locates
literals and displays a list of unlocated identifiers followed by

FIRST CLAST
2l az

vhere al is the lowest and a2 is the highesi address to which woals have
bt placad since an entry was last made at START. '

12.1.2 Non Load-and-Go Mode.

In this mode programs arc output to paper

. tape in relocatable binary (RLB) form. If required by the options they are

pr eceded by a loader. The assembler forms and stores a checksun.
When % is read this checksum is output followed by fifteen

blanks and a loader halt code. Any necessary LU messages

for global identifiers are then displayed. (EU messages are

explained in Chapter 13}. These are not necessarily errors,

as the labels may be supplied by another relocatable binary

tape. They must be distinguished from EU messages for

missing local identifiers in the last block, which are displayed

before the loader halt code. If-any errors are detected during assembly,

punching of the relocatable binary tape ceases and compilation continues
in the Checking mode.

12. 1. 3 Checking Mode.

In this mode error indications and, if
required by the options a label list are displayed. No other ouiput occurs.

- The only store space uscd is that cccupied by the dictionaries.

12. 2z Loading of Relocatable Binary Tapes.

R1.B tapes can be entered into the store at one of the following

"sta.rting a_ddresses} i Meds 3 («@%& . Wﬁﬁgﬁ%ﬁm 12,65

Address Name Effect

_ : START A Cancel the current existing dictionary
&19934 (. and read a relocatable binary tape.
435 3 Start placing it at location § unless it

begins with a PATCH to a different
starting address, gicieg
ervpr ondlicabons oo ledoed

YO~ Temba TTlocsde

qaer Teloceda
£ V1436 START B | Read a relocatable binary tape
maintaining the current dictionary.

. SIERY A,
BYHE3F | START C | As for 90, but CPA is not reset to &

OCTAEL

\ Once this has been done it is
not possible to assemble source tapes without reading in the assembler
again,

During loading, a list of global labels used and
their addresses is displayed. If any errors are detected an error
indication is displayed and the loader halts, but loading may be continued
by entering at START B to find further errors. The effect of an attempt
to run such a program is undefined. On reading a loader stop code
loading stops, the loader displays a list of global identifiers still to be
located preceding each identifier by 'FU'. It then displays a FIRST
LAST message as described in 12, 1.1 above with al referring to the
last entry at START A or START C. The checksum preceding a loader
stop code is checked against the checksum the loader has made whilst
loading.

Every RLB tape must have a loader stop code at
its end (i. e. the last source tape used in its production must end with

@ %@ Ol

0.

12 3 Mwmg of RLB ta,pt,s and mnemonlc tapes

It is possible to read “(,V(Elal mnemonic idpcs into thc
St{)re using the assembler, and then to read several RLB topes in at

'START B using the loader in the assembler., In this case all the tapes will
share the same dictionary and can communicate with each other via global

identifiers. This facility permits library subroutines to be stored as RLB
tapes and a SIR program to use them without itself having to be translated

to RLB form, Note that the last of the mpemonic tapes must end with
new l:me % new lzn O '

*12.4 Loading programs into the high end of the stove,

Programs read in load-and-go are entered into the
stere immediately above tha last program read in, unless the 16 bit in
the options indicates that the program is to be stored in location ¥ onwards,
Programs can, if necessary, be directed into a specified part of the store
either by means of a patch at the start of the program or by use of the
tcontinue at %/ option followed by a skip, prats 2reliday o letber bo cvpid
brewckile wlb& ey 'fil' ;:jr.vi-esij.

-

12,5, Compatobility aitbs earlicsr s f -PASS S12,

RLE. Lnpes wede usng “I-PASS SIR 2[efeh may e Aoasdsd
a5 v geebow (2.2, ahowa buk Wiung ke peesdir yaade 1.
(ﬁ*.{,.éﬁé. Bpey rcade he,j toa [e{{:@ Grush %«{’%f‘#ﬂ Lefest & 1-PASS
wade foora govar- wpes ol cﬁm@ R N R grovfs,

e Heal Cucogl fow Buir rredfs of 'Mfdg:b

S

ﬁ)

3
o
12.6 Multiple Program Assembly
If two or more programs are to be used together, Jmked by SIS S
_common global identifiers, and each program is termmated by %; the o
followmg rules. should be observed. -
12.6.1 Load and Go Assembly
Assemble the first tape by entry at STRET. Thistape may
have any load-and-go option. As semble all subsequent tapes by entry at LENTINGE,
These tapes may include any load-and-go option (except options including the
32 bit). :
12.6.2 Assembly to paper tape (non-load-and-go)
{1) Assemble the first tape by entry at START The first
~ significant item on this tape must be the option = ¢
T No other options can occur on this tape. o
(2) If the program is continued on further tapes, assemble
these by entry at ConTuwe, until the % is reached. There __
must not be any options on these tapes. -
(3) To assemble the succeeding linked programs steps (1)
and (2) must be repeated for each program.
_____ (4) When loading the programs the first program may be
: loaded by entry at STARTA or STARTC.
(5) The succeeding programs rnust be loaded by entry to
STARTB. ‘ ’}
w4
31A

Bioie D f. i’{»i{i %sﬁ wonfh
k- g, gzu"%} ﬁ»fﬂw&ﬁ@tfj

s N !

2 R %_%%g [

HOT oW

v et .
Rt

i

?”g*{i*.

-

IR

Chapter 13: ERROR INDICA’}"IONS g /
' 3{31103: 111(110&11:10113 given during dssernbly
Thc following error-indications are dluplay ed (1. e. output
to the teleprinter} during the assembly of SIR tapes whenever the
appropriafe error is detected:-
Error Meaning Effect in Load-and-Go Mode |
EO: Instryction Error
' (i} function > 15 One store location is left
(ii) address part of unfilled.
quasi-instruction not
absolute.
? El: Contextual Exvor :
Any impermissible sequence One store location is left
of characters not giving unfilled.
any other error indication
r2: Octal or Alphanumeric Error
(i) Too many characters in One store location is left
an octal or alphanumeric unfilled.
group.
(ii) character in octal I
group other than digits
0 - 7.
3 Label declared Twice
Label found identical to a One store location is left
previous label in block unfilled.
where previous label is
still valid. }
E4: Globzl Jdentifier not
Beginning with Letier
Applies only to identifiers The program is corruptcd
in a Global Identifier List. in an undefined manner.
6 Store Full
Program is about to over- The Compiler waits,
write dictionary, or vice- Compilation can be continued.
versa. (This may be the A patch, skip, opticn or
result of a Patch error). obeyed instruction must be
(E5 after % has been read read next. -
means that there is
insufficient room to locate
all the literals used in the
program,) | }
3L

Identifier has appeared but
never asg a izhel. Given at
end of block for local
identifiers, or on reading
new line % new line for
global or sub-global

TError Meaning | Effect in Load-and-Go Mode |
E6: Number Overflow . '
' (i} integer cutside range - One store location is left
~131, 071 to +131, 071 unfilled
(ii)more than six digits
in fraction,
ET: Buffer Overilow
Over }20 _chz_}gi"'é,cters in line One storec location is left
of text {i, e. too many unfilled, .
for read buffer), '
E8: Iﬂegal Characier
(i) Misread or mispunched One store location is left
tape. unfilled.
(ii)character on tape having
Ao inkernal code value
(it 5,} ?ﬁzvi.%}:’g Evvpnr
o9: Stop Code not first
~Character on Line _ .
Characters other than blanks The Compiler waits.
or erases between 'new Compilation can be continued.
line! and stop code. One store location is leit '
unfilled.
EG: Global Label Error
An attempt has been made to Compilation continues.
redefine a global label as
sub-global.
EL: Literal Error
A literal has been used with an One store location is left
instruction other than 0, 1, 2, unfilled.
4, 6, 12 or 13.
EP: Patch Error
A patch, or obeyed instruction, The Compiler waits.
refers to an unlocated address. Compilation can be continued
A patch skip, option or
obeyed instruction must be
read next.
EU: Unlocated Identifier

Compilation continues

identifiers.

33

13 1 Layout of Error Indzcations and ’lhezr }Z‘Hect on
Assc,rnbly

Each BLYOY 111(11(:&%:1011 is pre ccdcd by %@ t%ﬁ& M&,&ws
'I‘hrcc different {ypes of layout are used for assembly error mdlcatmno -

(i) 1 EU: EUis displayed on a new line, followed by the
identifier. Whi{:_h has been detected as unlocated and
an ‘address®. If this “address® is §191 the identifier
appears only in Global label lists, otherwise it is the
address. of the last reference to the identifier, The
assembler continues checking the identifiers in the
dictionary.

(ii) * E5, E9 and EP: E5, EJ or EP is displayed on a Sl
new line followed by the bracket count (i, e. the
number of '{'s found since the last START). Assembly
is halted but it may be restarted at CONTINUE,

(iii} En (2l others): En is displayed on a new line
followed by the bracket count, and on the next line
is displayed the line of source text in which the
error was detected. The assembly continues with
the examination of the next line of text. '

In all cases, output of relocatable binary tape ceases
if assembly is to paper tape, but error indications (and labels if requested)
continue to be displayed.

13.2 Examples of Assembly Error Indications.

E2 16 8 occurs in an octal group in block
PRINT 6 &800000 16 B

EO 10 Missing separator giving rise to an
152048 impossible function in block 10,

T Note: EU displayed after % has been read is not necessarily an
error indication. It may mean that a Global label, which belongs
to a program that has not yet been loaded, has been referred to.

C* Neta : 2-FPASS Si@ ?"";"t“‘ e Rima of Gouvee toxb on Q—i»-.-\d‘\lm

ES or Exqy part o olt oF

[Ty @ rubbisle, ’

13 3 eror Tndlcatmns given durlng Isad.mg of rdﬂcamblc
bnnry tapes.. ' : -

- The follovrmw error mdzcatlons mqy be gwcn durmg ihe
loadmn 1elocata,ble bm.ary tapes:- : : :

Error :Iﬁdicati'on - R EEEEE Mém‘sing
FA) Mis-read or .' - L two dzﬁel ent hmds o{ ﬂlegdl
FD): - mlopunched tupe - o 'codeu on RLB f_d‘oe

FC: Label used twice ' 'as fo_r EB_ .

FE: ©Store overflow as for 5

EE:}?‘: Checksum failure: punched checksum does not equal
' ' checksum added by loader.

5}?‘}3-: Unallocated address error | as for EP

FU: Unzallocated label as for EU

- Note that:

(i) FC is displayed when a tape with a label in it is entered
at START B when the same label has already occurred
in a previous tape of the same program (the presence of
two identical labels on one tape would have already been
detected as an error during assembly).

{(ii) ¥U indications will be displayed when a global identifier
occurs in one tape and refers to a label on ancther tape
which has not yet been entered. FU indications only
indicate errors, therefore, if they are given after zii
the tapes of a program have been read in.

!? Q\.‘r‘ - i ’%L.QL
(iii) Since all localiidentifiers are eliminated during asgsembly

of the RLB tape FC and ¥FU refer to global identifiers.

No additional information is displayed for F errors except
that for FU erl ors thc identifier which is unlocated is displayed on the same
line as the FU® All F errors halt the loader, but loading may be recontinued
at START B.

W oamd ean c..r:i.p«dﬁf L-\ %/\MV‘ CQM?M%S b L{’/.g
addu<st wn ELL errovy,

Chapter 14: EXAIV}'Z{”LE OI' A SER 'PROC%RAM

“is putin location ANSWER.
and it will stop on the stop code.

: _ The follewmg short. pi ag am adds up thc absolubc va1ues o,{
"Lhe ten 1n’cegelu in the block headed 'DATA' and stores the answer in
location ANSWER. 'If, ‘however, the sum becomes too large 1o hold in one
' 3101’6 1ocatzon the 1;11:{31 s OF are pzmched out on a new line and’ /15 81915
The program tape is read in first at START
The data block following the stop code,

s

which can be on a separate tape if desired, is then read in at CONTINUE.
The program can then be triggered at location BEGIN, the absolute address
identified by being read off the label list which is produced as shown below:-

G gEGInN

e e - LOOP
OF
END :
COUNT
SUM
(o Angwen

T TATA
FIRST LAST
¢ 5

The block . DATA occupies locations 37 to 44 and the
11tera,ls occupy locations 47 to 52! the first literal being placed in the
lowest address.

L]

S

13

as

%0
o

4
35

tooald Be less Pa..&{%zw%«'«_,m.&,

54

26

L oo

%2y

BEGIN

LOCP

CF

END

COUNT
SUM
ANSWER

L0 M D i et D U b D 0D D e D

EINEL IS

>4

(HALT CODE)

[DATA]
DATA

o/;

+65
+12
-14
- 756
+602
-5

+56
+1

40

-22

{(SIR PROGRAM EXAMPLE])

| [BEGINwDATA ANSWER]
.10

COUNT
10
SUM

COUNT .
DATAT1O
i+2

2
+0
SUM
S5UM
OoF -
COUNT

COUNT

LOOP
SUM
END

o2z
6144
£133
6144
J APXA
6144
=/15 8191

-ANSWER

310

 {ENTRY ADDRESS)

(PUNCH NEW LINE)
(PUNCIH O)

(PUNCH F}

37

s

(SR

o

14. }. Notes

{i} o?tmn * 23 means 1oad. and go, 1151. la‘beis, cleas: the
"store and stari assemblf at % g

(i1} re}.atwe addresses have been used for short jumps and
zdentzf_l_ed addresses for longer jumps.

(iii}) the identifiers here perform several different roles -
1.O0OP, END and OF denocte locations to be jumped to.
COUNT and SUM denote workspace
ANSWER denotes a location holding the result
BEGIN identifies the trigger address on the label list.

(iv) the ocktal values, with parity, of the characters to
be punched have been used; ina long program this
would be done using alphazm‘rneric groups togethel

with a code table and print routine.

_ e
: (v) the program occupies locations 8 to 44 and the six

literals used (- 10, +0, gozz &12% &12¢ and =/15 8191
occupy 10ca¥.10ns-‘?:§ to 52 'I‘he location given under
LAST in the print-up is therefore 532.

(vi) the halt code at the end of the first block is on the
line following the comment (HALT CODE).

(vii) % is preceded and followed by 'mew line’,

(viii) BEGIN and ANSWER have been declared as Global
labels so that other programs can refer to them. 4
DATA is not wanted outside the program and has
consequently been declared as Sub-Global.

14.2 Layout.

As separators can be inserted at will between the
elements of a SIR program, considerable variety of layout is possible.
It is recommended, however, that the layout used in the example be adopted.
Note that extra 'new lines' may be used to break the print up into convenient
portions.

#ln 920 Telecoda

28

O HAPTER 1B SutwasryY of [-£ASS

SR ETERY FonTE

Ok Bty ik | Pckiow | Raferamen

&34 STARTA Ace

£ i‘%‘:é-:%s STEETA Yo “To Asodh 2.3

& et STARTE Ri& |

&ryazd STARTC P

& 19940 START GO Te Looch

GAtF4l START 980 Y Sowes 121

& 137 42 _ cﬂe:}m?;_zﬁéu@ - {”;zs.#?ﬁg,-s o

& 1173 43 | EXECOTE chowed promman 0.2,

CHAPTER 14! STORE USte &Y [-pA85 i)

o s L4 3 -
-PASS SR, 243[H, Binawy Mode 3" cccepies Losalions

ShP0 -~ GiLh. 3 Eam o.s."isawiig?m}ﬁ
oewwp we thae slwee belews SELO ,
w V\j.Q. 37 Ql\r“{i@% ‘.’3‘\,& 22 .‘1{5 !A.{i" L

G’C‘:u-iegj t?.ﬁwgﬁﬁv% %ﬁw 154 I‘ff?éﬁ .
Lo c@%aﬁ‘*‘-vﬁ

GI6T = €199 ase {9OT

E‘,p\:r\:u& {:5 I obfhee !;\,L ", _A_:j %’"‘_’5:?,1,}
\G-bik Busawy Tags foweak if4fH07
'%4@ ‘mﬁxﬁ}’ﬁ‘i ‘alcn Prrembn vt 8 e Sl

19

trhed ie;:}

& fmg’&‘ﬁm b céféd«'a,&w«:}
gm’% {:G‘u!’ir{»’i %’

3
Aot m%&w&&‘% o G

g.L &, ‘cmf_e,; s M.E:ﬁsf&«mvj acwel}a Ban Shye<

\-PASS SR,
s RED GED - Snen
(&‘iﬁ-ﬁml%{é e oy Av%hj to

I ATV

.
= &
.

mrm{;%“m =i,
g

CHpETER S 1

R Gereral Des Tt A m-a,..

This wvecsiow o SR Eas J}_\.@_@m toribize foe e
%iﬁauwir} P SO tem

(i) o enahble o SR progee to

wrhich oceuples VLVEW_.QL::S o ek QLAY —crerd,
store . Progromms ass ermbled. “Bjj 4 -PARS S8 are
Aot ko abouwk 4000 b SO00

jﬁb@ [rlfﬁi&m«

(;J”f,} rz%ﬁ e '%W_ﬁj, s

o &° wmods, armd abewh F000 wodis e RLB weda,
Progeamt assenablad b 2-PRE3 SR s G OALEY

:j -:j ot | i
ad locablons Rowm & o BILh, Ceclusina.

(li) To enable QIR progrovas b ba Lk
e ov 16384 « covd shore.

('H ;) To ‘:m&.&cﬁ. o S&\fg‘“ -~ &ty Vnt-‘:‘a:w@ ‘bvnﬁ»&:j Eﬂ?@ of o vw.:j
[~ g‘:a o, iw kﬁ. c.vg— M.-‘l»,,o c.«._:Lm\:ﬁ O_L t{«ﬂ—
S? Q.m}x d“?r E‘?’uﬁ« !Qﬁﬂ{.ﬁ_r

m‘«,f,«-&;m P

IQ\Y‘VU S t‘)r‘ﬁ‘?{mm no’ﬂ St s At ang @?E}Lﬁﬁ: [=% o 0&3%&5{
o wd
s e boevur ?uv«M For 1 EASS I8 is C\cc_m..?tl«mg;i.. \33
2~¢ASS SiE, BUT EVERY TTRPE ruagk thet watfo
o “newtuns T (Ses pongrn e 4). Swb-global idoutibiors

v nat ddshon flaes fwed frown plobel Wemtidae,

Potetnzs Crrnn Lalee o Lolle Mmg '(jo rrrel i

Cﬂ-j TN et N 5 o Q«te.a&r we tha ange
1 gN ¢ 16383, us

sebs (P sbore Poi,n.ﬁ{if
: s N,
(‘90) N o teN whaee N b an Lﬂmt@ﬁé-{ oy
e coage O N € EMGL "Ths

shore E;ol,w,hex to 2194 + N.
(¢) FLagEL o 4LAGEL =N

Gk LARBEL v o ;:_m.@o’-;a.us% docatzd ek,

etbunr a docod label e the cucrewt blook

seks e

wohere N 5 an Wt@ﬁa..-f

&

5 111 1
oF - B ?;i-ﬁ’%-)mj. X&’L%,;{’ i\a “ C’M'r‘ifﬁk‘d{:ﬁt} LT ThAL LEx ﬁ:g‘m!g

SERE

’M?NY“;.«Q;-F% o g&&:{w@;%ﬁ{ .

..4,1,13 ' %:m f;,a.-f;_z,{s__ N

GRSy LR corbminmg o '%YL%%M Loves ig,:f,-&t{; . KR e .
P R . T ' . - y
Sﬁw"s"“’ s L Geouvy wa o e SR B L prececiasdh

condh Follewsad by ak leatk ceme necsldne, space, or lbak)

sl l

%:&.ﬁ.« -f%f:s Lﬁazﬁj L : Y c:x%

bm?g,, Yrughang

togec, ubs fmi:l.ciw% ,

wM glw %EW

vt e baps gs o Looded,

ab o FTTT NS RN TP = ba S%;z;w. ?cm»x%:&f &;»;

Crtmtermnt, Fma;;g fddiess, providad
te s Bl g W gLt

e ‘qémq;%««wﬂ:j ‘m,%:a Suvae chienis

Bask By i

L‘:‘.&m C:;i!..ﬁv; Lae 5 @,ﬂ;;i“_ €) v, imw-j« &£

kN T, R

_ E’kﬂ,,ﬁti&m,&%f’gi‘“ e
i:»tw" Q.f'ﬁ"‘”qu,%a’éﬁ.- . s 1\’.‘:& L(Mﬂ,«:} Eﬁ»é%% c;-g k;;j s
START < 4 +O
T L s blas
8 O S

to A m%ﬁomﬁmgufj stasrk oo QTART colias %M«qﬁ.ﬁ
e comme -a,%lﬂa_x,&; con b _ tofhas o M,\::«m?ex.i; 3@»:3
trapuny e ow' chhu@x, J}m‘ mam,?tﬁ, ' B

& st T SRy

< ¢

B pobehn of s lype ohll da vesdsd W o

"nm\?} assemblad c:m)“ts Lo Lvsam Ervadt {f“{z_‘. :

progresm s
Jn:j yoeng é’
cplime ik 37 (s2e 90»%@‘&»?9« .3), & He Lt ws?z«rwm e
tw Le cf’wﬁxﬁ@ﬂk is NoT c,mi:ﬁmw.zﬁ v tfhe lask \m.vw e, {?x?ﬁ 3
gonce b W@ar ¢ f:umﬁm&;& velo P bl of te {;z;e,f,{,
'{:e.bwfj ?uwcfmm:{ wilagnn BB " S:jm'ma{ L !MD

Notﬁ, t‘-&@}; i‘{i‘ 42

Y brsbiecbions
2 £ A4 33
o 314y
8 0

g START

iy e wsed %x; gek up e RUTOSTAET .

12 < 4 3+2
5 2v¢d
® STAET
i dd ek h’ff. o mubotbd A Lmti{z}zr o

L % L3 H
(f;:.m Lot coutss o .ﬁ'} &

awmd Weak

progam s oeded .

Ao ¥dr nm‘:.niu shuowdeh fm&ﬂs«} I
WMEL—\ Lo U%i’ e v“;:_'if;f":‘)!..-?%‘&&_] L ade -AA s tbnoe g f««v;{ £ ‘E‘-&L LLFET ~g,= "y
G- raspegtos -aé "&@ g:sm DB Ew 'EM.L"&"-* &
_ - NE ﬁ -
Cak SUART L hat e G #E v

X Cﬂ:&i’ufﬁ-&«_!{am{ x‘f‘&-a . . T 1.%‘%

* -
.

{%.3. Oplons,

Trv G-PRSS SR o Safa{:m"m@., bhibs e e a?&.zz‘m Aeoun e
g:{,{.awlnﬁ r%aWMﬁg :

1 list labels - decimal addresces
. 2 list labels - octal addresses
. 4. punch zeros for skips
2
6

set store pointer to 8192
- set store pointer to 8
32. tie off present E;me:j tape with a sumcheck; punch
360 blanks and then punch loader and store pointer
for new binary tape,

T addiblovwe, o cleaswshore Moy e Fuw_g«&sz%u ok thae sboak
o e kines tepe b ngﬁ the @imae oF P shore

b e tr(é’cziﬂ?w; e, ¥ Q92 s edsind b P @g%ﬁ@f\
oo cleod chare ondl be fuwc.»gxwit Gor loesbiovns 5 o $1Hs,

W 163%4 oc anny dampe metbifle cF B2 L odded bo the
0?35{ e, s cloac Shoves wndl he puw e d, N - Lirsk

b clooe loeelizns 8192 posaeds, owd e fresed ko

dese & o E¥HE Clzacky s %:ng cam only be
used e oplieoas wlieds ?m‘cm e Aiest oo F
Hae progron .

COpbion bit 4 and the cleoc-store hiks should wOT e
requited wheas m&sambum:} o correlly corttber SR progrmm.

Optiomn kb 32 enables o '{u-n:j prog e te e assembdod
of Sevaml As vaw:j {:}’i? £,

F\U:‘&awgim ks &, 31‘ ond e clesmiettore bk Lesee ye
. 4

e v the et porss, oonsd bty 4 ewd 9§ diaee v
LA v e fecend pAsS We SHME c:,;shicms

pask e wssd owm botl posces (ctancuine e
sum-check codd Lait)

Y%

The locating of literals is similar to 1~fASS SIR - i.e. though
it is ofien not necessary to consider where they are to be located, they can be
placed in any block of consecutive locations at will by means of patches.
Literals for the two stores are considered independently. Those for the lower
store will be located immediately following the last location used by the lower
store, and those for the upper store will be located immediately foliowing the
last location used by the upper store.

Programs are allowed to jum? from store to store indefinitely.
For example, the following program would be acceptable:~

%23 - {locations
 LABEL 4 +i23 1 8
- i .9
4 g306) 10
Cfle3 »
S S § 163
AL +0 } 164
T t34s .
6+ 112345
_ $%w00 i
% 3+C | B29%
fipezied
4 -1 § 15
S
3 AR} 8192
4+l | 8193
A .B194
& 40 | 8195
A .

The literals used in the lower store and upper store are treated
independently. In the example, the literals for the lower store are +123
8306, -1 and the literals for the upper store are +1, -1.

The lower store literals will be located in locations 16, 17, 18
(because 15 is the last location used in the lower store) and the upper store
literals will be located in locations 8196, 8197 {because 8195 is the last location

used in the upper store), Please note that the upper store literals are not locatecd |

in the order they are written,

43,

4.5, Assembly & |onding, & e label Lisk.

.. L . \ . ‘ . f:.'*‘ . — . - \.
RENS bﬂw{:e Lt 2A-PRSE SIR ‘:};i;{'.@_gj @gn&w‘:} Mode 2%

- Y ptzeh, Y
fy o eBal lasbucklong b Mede 30 The SIR Ticesda
%Z:»?éiﬁ, " %Qﬁ*ga%‘zf& Telawede we 63:32.0 m@iﬂ_mzi&é [N . oy %“";r:migz. 3

The Aiest E:&.f%?“ v evberad ok @
Har otfrrs ol 4,

o 13.} P S §

o “m"v{‘:ﬁ oz hlest pets Ha ogseniblar checks for
i stores | e dicbisvang, Titles, Coras wdlenlioag
(% %3 & oeddrasies &3 “© Aoteels (183 op bior bLabs i o &
aie. e%@j‘@w’-«%} ot evkpuk g bl prnete . e %30
Telacode & e Rk bepe coms anberad ok G, ad

W GO0~Senlaz Telcesda 4 the Lot !:3&{;&. ot Gadoead
ek 12, Local La(zeiif et precaded by 2 gpaces.
Reeding it ovly stop B o holb-code & reod oc

i 'g@m-»e 95 | G path Y e (& 5) v encruaberad .

el

Whaan o % > E weed > O mwussene B tBee Foere

FIRST WEXTA NEXT2 BICT

8 5434 42345 306%

il be punclued, IV FIRST is the HLowest lowkion
s e -%:-3 taa prograve, NEXTL omd NEXTY o thae
next aomlabls loca ki ong oafter e lileele S, e Locwer
Py vpper store v tes (ot mu.mmim (LY -{ﬂfm%i«.m t
Aocakions Lged "o‘j e progmma T Hius FAIRST s e
saent e a5 e [~fASS SR 2fefts, bub NEXTL oron
rek be e Sowew as LAST o4 1-FASY SIR ,oples one allowsle
o oeftew, s) BT tnchiesiss Haa pes Qﬁu;\fe’;n 2 A ’

L Lr:&-r i}{‘-& C‘L«L Ci’;’;iﬁ‘*’@,—v‘& L% 4 91 V"!‘:.S ?q ol <2 LU'SQQL bg} M&Q““-*iﬁ{é t’g’,\gw P rDS e

e sacond pest s wade b:} el ,mxﬁ tae £t %‘ﬁ?fs:, wl
10 awd ol offaes b gL I envmany cemaae dmuvd o
Yoo Ak pari the ossenmabler S‘i‘iﬁg&., wbae edered ol 10,
AR, e wuwiber of oves _ uw e accumadabon Ev_‘t\f—_} i3
e doe wicd o sgsersbla W § el of tPuse cros.

_ ‘:L‘ww;.wsj \“ﬁ{@._ Second pass, e ‘:5;..%_5«3. baps or '%-;,?e.: Gtk

Cpwdaesd) the number ol _Eﬁﬁ-@@s '_‘W;.Z.E-«.;i e g‘"ﬂ%ﬁéﬁf‘ A

i undens '&5;_;@?@@;'_m@:&_mm;—%ﬁ bk R 44

. iﬁ%’e Eé‘) Z}:;‘U%‘r*{;t&ls? h?f"»—%m obwc.k”tmww‘,g & osgs Q..Vﬁ,ic;{;.;&}g% fg:f{“

a5

h{:%"’.-q-' G {,@%}%ﬁ, @%‘i‘ﬁ%ﬁmﬂﬁnyw‘_ o o %’5&*{) S il Al ot oowiost

dielienany poudevs owb o Loy OF e agsevallac s
5 . .
L5t 55%.,‘«3 1';&'63%&5& [- %4 . S er:’:! hﬁ,{y@; wg@m g,‘,@t.@wﬂ% ab 1L,

THhis bepe i wsebed Fas Suiﬁﬁ%;ﬂﬁf@,ﬁ S

w2 h
I

Su??ase. o %xﬁe, progeoae A g L e M?Lig.sfw SN = -ﬁﬁimaj
k&?a Jb:j 2-PR8S O Q.,s (:A,_g,xmgk e Hoa chore 5
mastedin Ls foued e RE .
store ki e 1SPASE SIR assenehler, o AMEND,

o coveackiioe (*nﬁ e be bmaufadid
te dw m«%a,;ﬁ\; ehi e hitrouzanas,
W

&.V\f—gs [+ 30
e |3%s] LgeEss LV
o ?Q‘irm;l_m’

to jm;ww le:w'\;fi

The »?\q.a LT consistk of curimy rurnndoae ok \ﬂodﬁ:s;
pakrhus ond estrcckieds Gn Wb mey o eefer bo
%/Lo*:mjw -‘iﬁ-‘}@w’«ﬁ if::maimi, um e b ?V‘sﬁ%mﬁ%.e K“is
o pokil occurs hefowe tho et globed Ldameiinds
Uk b wamey refer Bo ANY global of e e
prog e, Ky r b pmi:rj}aes ofter e Fuest cgm\tba.ﬁ Lt
ot Fig wessy onhy eeder glekals & tlusw ogpens
v e ‘:mamﬂiﬁwﬁ %L{}‘maﬁ; Lisk, Tk eppasd bo Lo
VLLLENAAY o cheat o Qviﬁ k. 6an o-f%‘{‘em - obfiamty
'E et Le 84"’@% . :

To compla a £in a, place e A g of tPe dickitean
and osseenbleoe ke e Stoea C?@‘m;&t} of amoties
Ww.ci@.maﬁ> L N reand of Lrabial ceShaackiong. Ty Looct
pouss e thae '(:ﬁﬁ vy ewbewrsd ot (o o gw\ e ete

Bao Ubersl ol da Joceted o wWiwsd . e @ Dtoe thae
fonat wthues o8 e b ¢ ovnbers o e A 3> o

ok 15 (w cotaiche case o Uleembs ol be Lorentid

cvg‘ir; & tﬁ,e, Uﬁ»eﬁmi, H ot e veoaw ?.ﬂ:} % c (0 a FH”“"—":":‘"‘““'
"%m%z ass :z.mxiz;i;d;lx) . Evtoe tha ‘gw.ﬁ &%m;f\ WL O

v ordis to c}ﬁw G %L""““:j f:ﬁ%@..

Label lucks '?un&mmﬂ% cobuilsl ascqw«%&;ﬁ fias call be

tom o Saws Telocods or ot of fa vagmee L"‘U{":&

45,

ML S

TRl

i B :
or Evroe Tedlcabismsg,

o

8:&5&#@% WA&» m&‘u&m}‘ﬁﬂ'r’,& e o ‘Sa«wﬂ, ong Ln—gwn C-Past BIE i

e Qf,g_ ':v\- t‘&.,c; .si ég - m(} w»,,‘/;:,cg__gz_ 3 b@'_& 3 b, {;‘;:-&Mﬁﬁ {Q j iO
“ermse’ chasmckers, and © {::zx.i:f3 w punchod, as Tupace®,
Qﬁw‘ 4 wi e v, &.ua*(g. g Wéﬁ =1 %Uﬁ‘miu‘j difbern By ST

(‘5 E.i lbs %4—&.»% Lg’ (S J::& . J&"{, ‘fi

R B e e.,nﬁ crg tfo ’-{”}g(}@m&«ﬁ H

Unlocated identifier in a labelled patch (e. g. li PASS + 2).
This will always occur if, for example, a tape consisting
of such things is entered at 8 (which always cffectively
destroys the wpresent dictionary) instead of 9, l4~or 1%,

jjim‘&iﬂnumj Stote AL,
The store pointer falls outside one of the following ranges:

14 SP ¢ 8166
8192 { SP £ 16383

A skip has caused a transition from one store to the _
other. The only means of doing this is by using a patch
or option.

(m) ES dh be awen foe ?a,rl\U ervoes,

(‘gv) E LL- (»\J.LLE
\c&.ﬁ usiﬁ g*ﬁ'(‘

() 2-rass
()
(&)

(<)

<

bLe %_QU.QM saligen cf@ & raad, Ut e genw %ka‘ﬁod

ag o Gy e &Vl % SJJ ’ﬁqj% sk more B e LGl o

S8 wild SToe
Ik vy &ﬂ_%@_ et nol ghaer coibf o

it i:eu; start of Eae fenewelh poss, d o oemed woare found
e e Rt pags (ses pormarapl, |3 5)

Wi i
3}’.&?‘5'3*,,;’33 &.evé S sy ».)-'ét ?mts ;‘g f;’g‘;sz.

» "
" VLl L buﬂ_szn

e lobel

Vatiss. ew Hag J;lri& @ ig

oddress of

digmarss s witd, ke
ot

(P b ’c:gr.’j cousad b 5 tn m;ﬁ’vw;ig %'GL?GS L m"ﬁ“"f“} A "t"(-)

Wi ‘?/ o s wad o~ thee

Ah L; e E

£ lux rf'm,i 74 M“MJ s e

Sa cernah, ponss

hed) U

.A‘SL f;'g '

(i.e. before
ey "-;4 cn,,i,i\.

gi{,{.‘-"ﬂ"‘?ﬁ'{' pagoey ._i,,:gf.;

"f’lq L2 &‘,a-é‘;:,m ?Ur

1%, 8. ﬁ.um,»ﬁa_fﬂ% ok Evbey ?aiw;%i.

Roodk §irst bope fa Rest pocs,
1 o Qi. 'Liytx feta Thgrvl
. Road Forthec bopes

fgw ‘g(fsb gmﬁs .
16, Raad Lush %ﬁ?ﬁ, for secondd ‘fi‘f&ﬂ g
i, Rﬁ»f&ﬁ& '%,J S S A : %:_% gé,i' q{:z;ef £ {igﬁ‘v&g{: P wf .fs:a

G
G w

“ R . . : i
ervoe tamdhloem b e O :

o]

1Z. Rasmd ‘{:WS £ __ %‘:’eﬂ?& for «gw sk poass, g'au'wfﬁ ,

bobel Lisks or eror ondicabions in 960 S
13, Sewne as 10, Lok LanOrL. erers found v st peg 8.
4. bama ar G o (g bub reboiee dicbiovaag.

S
1S, Seme el § or (&, ke teboln dlehiona.,

Uherals ofbee Libarals
{é’. ':gumis F{SE‘@V#&}EW - :D ir,&a‘xam‘j .

«,4
of st {*m.iw,.

l:;”n % g;.hakw@ kﬂ?ﬁf ?Uﬂﬂﬁmemﬁi‘. ‘gtzt—.g - 8L

S1E .,

The. vaﬁ ’:ﬂfﬂ

I 33
€ Lo fteda, 3 '
A

ponchedd by “2-rAss SR, Af1 [,
O et .&w e Ru C«o 1:). q{:}{:‘“ ‘5;95 "‘";ﬁm& \g'g“t“
E'Lm‘,v:j %?e& icm-{ wfu.;ﬁL 5 { / 4%“ f[‘:fﬁ'ﬁ‘k” o5 c:{.(&..!‘&w&)ﬁs{

elsecnlare |

ﬂm:j & Fe.:u::L L:s«.b‘:s

chose 4 :}, wabiel Gashruckiong
uw‘m:ﬁg b e pradee HMode 3.

. “I“Jthj fank,
L“\: Moo chanete Laiks

:) Cevv b et csuvl:«% wh Wl
‘D@-‘@ f’ LA C.-gia. L '_,f; t}f; Twlea a_.ai ¥ E'&&w bgfd"a
tev GO er ach (d o thas faals ?:\tj et
pacmmcn {f""fa 4. 2 _} o o d

_:jm-m,i& g’cc-? L5 resuciih .

pro oo L8
3

Ee_ow\ u,se,ai} Sen

£ bpt o gEOE B
S LATERE,

ES

g

& t@ﬁ‘mf{:ﬁ,

Etgwey -~ Q%ﬁ.c}wﬁ.ﬁmﬁ. 3

RN R e
g

P-
PAS
S
SR Ok
plhuon
S

RS-

ey

ks

M %ﬁf% . C';'f.f»"z,-‘:,_iﬁ% £ a8,

. &
4 opbiong evd o

A

; L Sy PO : PR THUEE PR
QZ@" ?’Iﬁfﬁ ¥ £ o fF ey é{:”{} xﬁi;,e:%@mi _ ’%ﬂ%} & -‘;‘{@%‘L RS, Comnh,
o Sew Alaoks., The 4 oybiews awe Hae

. o
ﬁ*—ﬁg%; Willinad, | crann ggw LA

P Al CESSR L

%W% %us&.fm ‘“\Tm.,i;.%«:z a5k, i%n.ov%:
Gt eadr e ,{mé' 4 Lt"z‘mg,m%

Lot v nld £ L\&mvm)

,, Lo !) . . i
®23 Teoimml £ Orelent me@f&r Cleasc St’t*t«a’ a4 feanndal {}M‘:v‘ﬂ_ g

*22 No o
*3 Decimal U Cofml -

%2 No “

Usefg

*16 No fak
*19 Dicivesd L Oclaed «
*20 Neo .
%23 Dot R ocbaf -

%

y tECaesn prosch @3 @80

St B3 %Ziﬁé% g::{i&%%;
el

Mjs\ "A‘M‘Lé\“éﬁi« T

oy
¥

c;sz;i;i{?fd‘f £us 1-

pes SIR

] . N M
O"ﬁ C"g i.?fd‘;,{‘ qﬁ" t‘l{‘,“r‘;/f gbﬂui&”’ f i

bged b 2 i
o He v v bt ok aie G;ﬂ".i:; Lﬁ}

i

B V. y

sae eplionss pany fe wfed DURING

5% Tl L , _.
3 B Skasdk oo thop Lebols,

Cff*g%.‘i{?(vﬂ {‘%(‘ Q - e SIE

£
Sl l f . N
gz ;4-'4.,{?5 f% gih? 4 } ﬁiﬁ £yl i;i,{_ (:\:4‘_' Fire %.
5 O ef e g Rt

.
Fouid ke

4 wb b, Loy
Raves foy o Shaps R

s Lok ey
Y

